Ioni complessi

• Obiettivo:

Studiare le trasformazioni di vari ioni complessi di Fe³⁺, Cu²⁺, Cr³⁺, Ni²⁺.

• Prerequisiti:

Ioni complessi e loro nomenclatura

• Materiali e attrezzature:

<u>Vetreria:</u>	Provette	
Materiale di consumo:	 CuSO₄ · 5H₂O solido FeCl₃ · 6H₂O solido NiSO₄ · 7H₂O solido Cr₂(SO₄)₃ · 9H₂O solido 	 ■ H₂SO₄ diluito ■ NH₄OH diluito ■ NaOH diluito ■ Soluzione K₄[Fe(CN)₆] 5% m/m ■ Soluzione KSCN 5% m/m
<u>Varie:</u>	Agitatore in vetroSpatolina	

• Procedimento e reazioni:

Complessi di Fe³⁺

Si scioglie una punta di spatola di $FeCl_3 \cdot 6H_2O$ in provetta aggiungendo qualche ml di acqua distillata. La soluzione di colore giallo così ottenuta si divide in tre provette: la prima verrà tenuta come confronto, in un'altra si aggiunge qualche goccia di soluzione di ferrocianuro potassico $K_4[Fe(CN)_6]$ e nella terza qualche goccia di soluzione di solfocianuro potassico KSCN .

 $4{\rm [Fe(H_2O)_6]}^{3+} + 3{\rm [Fe(CN)_6]}^{4-} \rightarrow {\rm Fe_4[Fe(CN)_6]_3} \ + 24 \ {\rm H_2O} \ \ precipitato \ Blu \ di \ Prussia esaaquoferro(III) \ esacianoferrato(III) \ ferrocianuro ferrico$

$${\rm [Fe(H_2O)_6]}^{3+} + 3~{\rm SCN}$$
- $\rightarrow {\rm Fe(SCN)_3} + 6~{\rm H_2O}$ rosso sangue esaaquoferro(III) solfocianuro solfocianuro ferrico

Queste reazioni sono utilizzate per la ricerca analitica dello ione Fe³⁺

Complessi di Cu²⁺

Si scioglie una punta di spatola di $CuSO_4 \cdot 5H_2O$ in provetta con qualche ml di acqua distillata (da notare che il solfato rameico è più difficile da sciogliere del cloruro ferrico). La soluzione assumerà una tipica colorazione verde-azzurra. Si divide la soluzione in due provette e in una si aggiunge qualche goccia di ammoniaca . La soluzione assume una intensa colorazione blu.

$$[Cu(H_2O_{)4}]^{2^+} + 4 \text{ NH}_3 \rightarrow [Cu(NH_3)_4]^{2^+} + 4 \text{ H}_2O \text{ colore blu intenso }$$
 tetraaquorame(II) tetraamminorame(II)

ISII Marconi	Classe 3 [^] chimici	Esperienze di chimica fisica:	
	ITIS	Ioni complessi	Pagina 2 di 6

Complessi di Ni²⁺

Si scioglie una punta di spatola di $NiSO_4 \cdot 7H_2O$ in provetta con qualche ml di acqua distillata. La soluzione assumerà una colorazione verde pallido. Si divide la soluzione in due parti e si aggiunge in una provetta qualche goccia di NH_3 . La soluzione assume una intensa colorazione blu.

$$[Ni(H_2O)_4]^{2+} + 4NH_3 \rightarrow [Ni(NH_3)_4]^{2+} + 4H_2O$$

tetraaquonichel(II) tetraamminonichel(II)

Complessi di Cr³⁺

Si scioglie una punta di spatola di $Cr_2(SO_4)_3 \cdot 9H_2O$ in provetta con qualche ml di acqua distillata. La soluzione assumerà una colorazione grigiastra. Si divide la soluzione in tre provette: la prima verrà lasciata intatta per confronto e nelle altre due si aggiungono alcune gocce di soluzione di NH_3 : Si forma un precipitato grigio.

$$[Cr(H_2O)_6]^{3+} + 3 NH_4OH \rightarrow Cr(H_2O)_3(OH)_3 + 3H_2O + 3 NH_4^+$$
 precipitato grigio esaaquocromo(III) idrossido di $Cr(III)$ idrato

Successivamente in una di queste provette si aggiunge qualche goccia di un qualsiasi acido diluito (noi abbiamo usato H_2SO_4): la soluzione assume una colorazione grigia.

$$Cr(H_2O)_3(OH)_3 \rightarrow H^+ \rightarrow [Cr(H_2O)_6]^{3+}$$

e nell'altra si aggiunge qualche goccia di una base diluita (NaOH). La soluzione assume una colorazione grigia, ma questa volta è dovuta ad un altro complesso..

$$Cr(H_2O)_3(OH)_3 \rightarrow OH^- \rightarrow [Cr(H_2O)_2(OH)_4]^-$$

Il cromo quindi riesce a formare vari complessi attraverso una serie di reazioni di equilibrio dipendenti dal pH.

Pagina 3 di 6

Valutazione del rischio chimico

Reattivo: Ferro cloruro ico Esaidrato

Classificazione di pericolosità: Xn Nocivo; C Corrosivo

Valore di rischio = 15
Classificato come rischio moderato

Frasi di rischio: 22 34 36/38

Indice di pericolosità intrinseca (P): 4.85

Vie di assorbimento: cutanea

Si tratta di una sostanza inorganica

allo stato solido

con T°ebollizione = °C

T°operativa = °C

presenta quindi

Quantità utilizzata: meno di 0,1 kg La disponibilità è bassa poiché D = 1

Tipo di utilizzo: uso controllato
Il livello di tipologia d'uso è basso poiché U = 1

Tipologia di controllo: ventilazione generale II livello di tipologia di controllo è medio poiché C = 2

Tempo di esposizione giornaliero: da 15 min a 2 ore

L'intensità esposizione è medio/bassa poiché I = 3

Distanza degli esposti dalla sorgente: meno di 1 metro

Sub-indice d = 1

Indice di esposizione per via inalatoria = 3

Tipologia di contatto: contatto accidentale Indice di esposizione per via cutanea: media poiché Ecute = 3

Rischio inalatorio = 15

Rischio cute = 15

Rischio cumulativo = 21

Norme generali protettive e di igiene del lavoro

Lavarsi le mani prima dell'intervallo o a lavoro terminato. Evitare il contatto con gli occhi e la pelle. Consgliati guanti in gomma e occhiali protettivi.

Esperienze di chimica fisica: Ioni complessi

Pagina 4 di 6

Valutazione del rischio chimico

Reattivo: Rame solfato ico pentaidrato

Classificazione di pericolosità: Xn Nocivo; N Pericoloso per l'ambiente

Valore di rischio = 8 Classificato come rischio moderato

Frasi di rischio: 22 36/38 50/53

Indice di pericolosità intrinseca (P): 2.75

Vie di assorbimento: cutanea

Si tratta di una sostanza inorganica

allo stato solido

con T°ebollizione = °C

T°operativa = °C

presenta quindi

Quantità utilizzata: meno di 0,1 kg La disponibilità è bassa poiché D = 1

Tipo di utilizzo: uso controllato
Il livello di tipologia d'uso è basso poiché U = 1

Tipologia di controllo: ventilazione generale II livello di tipologia di controllo è medio poiché C = 2

Tempo di esposizione giornaliero: da 15 min a 2 ore

L'intensità esposizione è medio/bassa poiché I = 3

Distanza degli esposti dalla sorgente: meno di 1 metro

Sub-indice d = 1

Indice di esposizione per via inalatoria = 3

Tipologia di contatto: contatto accidentale Indice di esposizione per via cutanea: media poiché Ecute = 3

Rischio inalatorio = 8

Rischio cute = 8

Rischio cumulativo = 12

Norme generali protettive e di igiene del lavoro

Lavarsi le mani prima dell'intervallo o a lavoro terminato.

Evitare il contatto con gli occhi e la pelle.

Consigliati quanti protettivi in PVC o PE e occhiali protettivi.

Esperienze di chimica fisica: Ioni complessi

Pagina 5 di 6

Valutazione del rischio chimico

Reattivo: Nichel solfato oso eptaidrato

Classificazione di pericolosità: Xn Nocivo; N Pericoloso per l'ambiente

Valore di rischio = 21
Classificato come rischio superiore al moderato

Frasi di rischio: 22 40 42/43 50/53

Indice di pericolosità intrinseca (P): 7

Vie di assorbimento: cutanea

Si tratta di una sostanza inorganica

allo stato solido

con T°ebollizione = °C

T°operativa = °C

presenta quindi

Quantità utilizzata: meno di 0,1 kg La disponibilità è bassa poiché D = 1

Tipo di utilizzo: uso controllato
Il livello di tipologia d'uso è basso poiché U = 1

Tipologia di controllo: aspirazione localizzata II livello di tipologia di controllo è basso poiché C = 1

Tempo di esposizione giornaliero: da 15 min a 2 ore L'intensità esposizione è bassa poiché I = 1

Distanza degli esposti dalla sorgente: meno di 1 metro

Sub-indice d = 1

Indice di esposizione per via inalatoria = 1

Tipologia di contatto: contatto accidentale Indice di esposizione per via cutanea: media poiché Ecute = 3

Rischio inalatorio = 7

Rischio cute = 21

Rischio cumulativo = 22

Norme generali protettive e di igiene del lavoro

Lavarsi le mani prima dell'intervallo o a lavoro terminato.

Evitare il contatto con gli occhi e la pelle.

Consigliati quanti protettivi e occhiali.

Pagina 6 di 6

Valutazione del rischio chimico

Reattivo: Cromo solfato (III) nonaidrato

Classificazione di pericolosità: C Corrosivo

Valore di rischio = 15
Classificato come rischio moderato

Frasi di rischio: 34 20/21/22

Indice di pericolosità intrinseca (P): 4.85

Vie di assorbimento: cutanea

Si tratta di una sostanza inorganica

allo stato solido

con T°ebollizione = °C

T°operativa = °C

presenta quindi

Quantità utilizzata: meno di 0,1 kg La disponibilità è bassa poiché D = 1

Tipo di utilizzo: uso controllato
Il livello di tipologia d'uso è basso poiché U = 1

Tipologia di controllo: ventilazione generale II livello di tipologia di controllo è medio poiché C = 2

Tempo di esposizione giornaliero: da 15 min a 2 ore

L'intensità esposizione è medio/bassa poiché I = 3

Distanza degli esposti dalla sorgente: meno di 1 metro

Sub-indice d = 1

Indice di esposizione per via inalatoria = 3

Tipologia di contatto: contatto accidentale Indice di esposizione per via cutanea: media poiché Ecute = 3

Rischio inalatorio = 15

Rischio cute = 15

Rischio cumulativo = 21

Norme generali protettive e di igiene del lavoro

Lavarsi le mani prima dell'intervallo o a lavoro terminato. Evitare il contatto con gli occhi e la pelle. Consigliati guanti in gomma e occhiali protettivi.